Radiosensitization of malignant glioma cells through overexpression of dominant-negative epidermal growth factor receptor.
نویسندگان
چکیده
The epidermal growth factor receptor (EGFR) plays an important role in neoplastic growth control of malignant gliomas. We have demonstrated that radiation activates EGFR Tyr-phosphorylation (EGFR Tyr-P) and the proliferation of surviving human carcinoma cells, a likely mechanism of accelerated cellular repopulation, a major cytoprotective response after radiation. We now investigate the importance of radiation-induced activation of EGFR on the radiosensitivity of the human malignant glioma cells U-87 MG and U-373 MG. The function of EGFR was inhibited through a genetic approach of transducing cells with an Adenovirus (Ad) vector containing dominant-negative (DN) EGFR-CD533 (Ad-EGFR-CD533) at efficiencies of 85-90%. The resulting cells are referred to as U-87-EGFR-CD533 and U-373-EGFR-CD533. After irradiation at 2 Gy, both of the cell lines exhibited a mean 3-fold increase in EGFR Tyr-P. The expression of EGFR-CD533 completely inhibited the radiation-induced activation of EGFR. In clonogenic survival assays after a single radiation exposure, the radiation dose for a survival of 37% (D37) for U-87-EGFR-CD533 cells was 1.4- to 1.5-fold lower, relative to cells transduced with AdLacZ or untransduced U-87 MG cells. This effect was amplified with repeated radiation exposures (3 x 2 Gy) yielding a D37 ratio of 1.8-2.0. In clonogenic survival studies with U-373 MG cells, the radiosensitizing effect of EGFR-CD533 was similar. Furthermore, in vivo studies with U-87 MG xenografts confirmed the effect of EGFR-CD533 on tumor radiosensitization (dose enhancement ratio, 1.8). We conclude that inhibition of EGFR function via Ad-mediated gene transfer of EGFR-CD533 results in significant radiosensitization. As underlying mechanism, we suggest the disruption of a major cytoprotective response involving EGFR and its downstream effectors, such as mitogen-activated protein kinase. The experiments demonstrate for the first time that radiosensitization of malignant glioma cells through disruption of EGFR function may be achieved by genetic therapy approaches.
منابع مشابه
Molecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملAltered Expression of Epidermal Growth Factor Receptor (EGFR) in Glioma
EGFR is a key molecule in cancer cells. EGFR signaling was shown to promote tumor cell proliferation and survival, invasion and angiogenesis and mediate resistance to treatment, including ionizing radiation in preclinical models. We extracted proteins from astrocytoma (III and IV) oligodendroglioma(IV) tumors and normal brain tissues and then evaluated the protein purity by Bradford test ...
متن کاملImaging features of estrogen-negative breast cancers: a correlation study with human epidermal growth factor type II overexpression
Background: Estrogen-negative breast cancers have different clinical course, prognostic features and treatment response in comparison to estrogen receptor-positive (ER-positive) breast cancers. Human epidermal growth factor receptor 2 (HER2) oncoprotein has found to have a pivotal role in natural cell growth and cell division and is suggested to be directly related to tumor invasiveness in brea...
متن کاملCOX-2 overexpression increases malignant potential of human glioma cells through Id1
Increased COX-2 expression directly correlates with glioma grade and is associated with shorter survival in glioblastoma (GBM) patients. COX-2 is also regulated by epidermal growth factor receptor signaling which is important in the pathogenesis of GBMs. However, COX-2 expression has not been previously shown to directly alter malignancy of GBMs. Id1 is a member of the helix-loop-helix (HLH) fa...
متن کاملThe inducible expression of dominant-negative epidermal growth factor receptor-CD533 results in radiosensitization of human mammary carcinoma cells.
Ionizing radiation activates the epidermal growth factor receptor (EGFR) and downstream signaling involving the cytoprotective mitogen-activated protein kinase (MAPK) pathway. In our effort to investigate the role of EGFR in cellular responses to radiation, we generated mammary carcinoma cell clones, MCF-TR5-EGFR-CD533 and MDA-TR15-EGFR-CD533, that inducibly express EGFR-CD533, a truncated EGFR...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 7 3 شماره
صفحات -
تاریخ انتشار 2001